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Absract

Using the moving-singularity finite element method described in Part I

of this paper, several problems of dynamic crack propagation in finite bodies

have been analysed. Discussions of the effects of wave interactions on the

dynamic stress-intensity factors are presented. The obtained numerical results

are compared with the corresponding infinite domain solutions and other

available numerical solutions for finite domains,

Introduction /

In Part I of the present paper [], a "moving singular-element" procedure

has been presented for the dynamic analyses of problems of fast crack propagation

in arbitrarily shaped finite bodies with linear elastic material behaviour. In

this procedure a singular-element, within which a large number of analytical

eigen-functions corresponding to a propagating crack are used as basis functions

for displacements, may be translated by dn arbitrary amount AE in each tirie

increment At of the numerical time-integration procedure. The moving singular-

element, within which the crack-tip has always a fixed location, retains its'

shape at all times, while the mesh of "regular" (isoparametric) finite elements,

surrounding the moving singular element, deforms accordingly. An energy-

consistent variational statement was developed, as a basis for the above "woving

singularity" finite-element method of dynamic crack propagation analysis. IL
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has been shown [,] that the present procedure leads to a direct evaluation

of the dynamic stress-intensity factors.

In .the present Part II of the paper several numerical studies of stationary

as well as propagating cracks in finite bodies, are presented. These studies,

in general, fall into the category of linear elastic dynamic fracture mechanics.

These studies, in addition to illustrating the efficiency and accuracy of the

present procedure, also shed light on the effects of stress-wave interactions

on the stress-intensity factors for dynamically propagating cracks in finite

bodies.

The presently considered examples include: (i) static extension of a

central crack in a panel from a non-zero initial length; (ii) self similar,

constant-velocity, propagation from a finite initial length of a central crack

in a finite plane body subject to an uniform, time-independent, tensile

stresses (normal to crack-axis) at the edges (which problem, is analogous to

that treated by Broberg [21, and Rose [3,41); (iii) a stationary central crack

in a finite plane body subject, at its edges, to a Mode I type uniformly

distributed stress with a Heaviside step-function time-dependence (analogous

to the problems of Baker [5], Sih, Embley and Ravera [61, and Thau and Lu [7]);

(iv) a problem similar to that in (iii) except that the crack-tips remain

stationary until a time to, where upon they start propagating at a constant

speed (analogous to the problems studied by Freund [8]); and (v) constant-

velocity propagation of an edge-crack in a panel, with the direction of

propagation being parellel to the panel-edges on which uniform displacements,

normal to the edges, are prescribed (analogous to the problem treated by

Nilsson [)0. All the references [2-81 deal with unbounded bodies, except

[91 which deals with a finite height, but infinite width strip. Thus the

presently obtained results for finite bodies are compared with those in [2--]
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and the effects of finiteness of the domains are discussed. Comparisons of

the present results with the numerical results of other investigators, where

available, are also presented and discussed.

In the following we present results for each of the problems cited above.

(i) Static Crack Extension

To test the accuracy of the present method of "moving singular-elements",

first a static problem of a central-cracked square panel [2L(length) = 2W(width)],

subjected to uniform tension at edges parrellel to the crack axis, was solved

to obtain the static stress-intensity factor as a function of the current crack

length, E. Thus, in the finite element development given in Part I of this

paper [1], velocity and acceleration effects were ignored. The eigen-functions

embedded in the singular-element reduce, when v = 0, to the well-known

Williams' eigen-functions as shown in Appendix A of [i]. Starting from an

initial crack length value of E0 = 0.2W, the singularity element was successively

translated (in Mode I growth sense), statically (with v = 0) in increments of

AE = 0.005W until a final value of crack length E = 0.5W is reached. During

the above series of calculations, the externally applied uniform tension was

held constant. At each current crack-length level, the stress-intensity

factor is computed directly as an unknown from the finite element equations, as

described in [ 1]. From the normalized stress-intensity factor solutions shown

in Fig. 1, it is seen that the present results agree excellently with those

reported by Isida Do]. The normalized results shown in Fig. I may be viewed

as correction factors for static stress-intensities, due to the finite size of

thp nanel.

,t liocb ciac tle se ..,'jl (t) in Fig. 1, as well as in all the subsequont

Figures, denote the current crack length (1/W) where the regular elements

surrounding the moving crack-element were readjusted as described in Fig. 2

of 11 .
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(ii) Self-Similar, Constant Velocity, Crack-Propagation from a Finite In+tial

Length

The problem is that of a centrally cracked square panel (L = W = 4On, )

with properties: p (hear mdulus) = 2.94 x 1010 N/nm 2 ; v( Poisson's ratio)

= 0.286; p ( Mass density) = 2.45 x l03 Kmg/r 3 . A time-independent tensile

stress was assumed to be acting at the edges of the specimen parrellel to the

crack-axis. The crack is assumed to open from an initial length ( 0/W) = 0.2

and to grow symmetrically with a constant velocity, v. This problem may be

considered to be similar to that treated by Broberg [2] except that Broberg

treated an infinite body with a crack which opens from a zero initial length.

The problem was analyzed for four different values of v, namely, (v/C s) = 0.2,

0.4, 0.6 and 0.8 respectively, where the shear wave speed for the present

problem is Cs = 3.4641 x 10
6 mm/sec. The dilatational and surface (Rayleigh)

wave speeds, Cd and CR, respectively, are such that: (Cd/Cs) = 1.8266, and

(CR/Cs) = 0.9238.

In all the four considered cases of (v/C s) ratio, the increment of crack

growth in each step, AE, was kept the same, at the value: (AE/W) = 0.005.

Thus, in each of the considered (v/C ) cases, the time integration step, At,
5

changes according as: [(v.At)/E] = 0.005. The finite element mesh used, at

the initial crack length in each of the four cases, is shown in the inset of

Fig. 3. In this Figure, as well as in Figs. (1,6 and 9), the singular-element

near the crack-tip is identified by hatched markings.

As noted in the review article by Rose [3], the dynamic stress intensity

factor K may be expressed as the product of a velocity factor k(v) and a

static factor K ; thus,

K = k(v) K (1)

The "static factor" K depends on the current length of the crack, the applied

load, the history of crack extension, but not on the instantaneous crack speed.
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As also discussed in [3], K is, in general, not equal to the static stress-

intensity factor, K for a stationary crack of the same length as the

moving crack. The analytical expression for K* (in an infinite body sub.J,'c :

to uniform stress normal to the crack axis), as a function of the current

crack length is given by Eshelby [11] and in [3], as:

*00

K = f ayy (x)/(E - x)2 dx (2)

0

where, Oyy(X) : a IxL/(x 2 - S ) IxI > SO (3)

In Eqs. (2 and 3), a is the applied tensile stress at infinity, 2E0 is thc

initial crack length, and x,y are cartesian coordinates centered such that x

=+ M(t) denote the current crack-tips and y is normal to crack-axis. Thus

ay(x) in Eq. (2) is the initial distribution of stress along the axis of

the crack, prior to its' propagation. Eshelby's results for the integral in

Eq. (2) is:

K* [O(0 [a(io) (2/7T) {(2+C) E-F}]/[l+( /2)] (4)

where = - )/E.; and E and F are the complete elliptic integrals of the

2nd and Ist kind, respectively, with the modulus [ /(2+Q)]. On the other

hand, the static-stress intensity factor Ks for a crack of length 2 in an
5

infinite domain is,

= (

Thus, in general, K < Ko. It is also noted that the Eq. (4) for K is
5

valid only until the time that disturbances from one crack-tip reach the othr

(moving) crack-tip. However, for the case of a crack growing self-similarh'

from a zero initial length (To = 0) with a constant velocity v, as in the

problem studied by Broberg [21, disturbances from one crack tip influence at

all times the other moving crack tip if 2v < cd, and K*' - at all times.
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The normalized dynamic stress-intensity factor solution for the present

problem of a crack, in a finite square panel, propagating self-similarly at

a constant velocity (v/Cs) = 0.2,is shown in Fig. 2. Note that the normalizo-

tion is such that a value of unity represents the normalized stress intensity

factor Kfor a crack of length 2(Z + vt) in an infinite solid with time-.fcoKs 0 rc flnt ZZ=Z

independent remote tension o. Also shown in Fig. (2) are: (i) the finite-size
ff in

correction factor F = Kf/a(7rE) for the static stress-intensity factor Ks in

the present finite domain; (ii) the normalized "static" factor K */o(,T:),

as calculated from Eq. (4), and (iii) the velocity factor k(v) for (v/Cs) = 0.2,

as given by Broberg [2]. The effect of the finiteness of the domain on K

may be accounted for, approximately, by including a finite-size correction factor

in the initial stress-distribution at E0, in Eq. (3) above. Thus it appears

that one may write, approximately, that K*f = F(Eo)K . For the present

case of ( 1W) = 0.2, the finite correction factor F( o )= 1.055, as seen from

Fig. 1.

Also marked in Fig. 2 are several specific instants of time (or equivalently),

the corresponding values of E) with the notations: (a) Dc, Sc and Rc are,

respectively, the times taken by the dilatational, shear and Rayleigh waves

to travese one crack-width, (b) DcD c (or Rc R c) denotes Dc (or R) plus the

time for the first rescattered dilatational (or Rayleigh) waves to travel one

crack-width; (c) DcDf (or ScS f ) denotes the time taken for the dilatational

(or shear) waves emanated by one crack-tip to be reflected by the nearest

free-boundary and reinteract with the crack-tip in question. The above timvs

are calculated from the continuum relations for the respective wave speeds.

However, it should be borne in mind that a "consistent-mass" representation

is used in the present finite element method.
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For the case of (v/Cs) = 0.2, it is seen from Fig. 2 that the computed

normalized dynamic stress-intensity factor correlates excellently with the

values given by F(E )K*mk(v)/a(rZ) until roughly the time denoted by RC '

At longer times, ie., at the times greater than Rc and Dc f the computed

normalized dynamic Ki(t) appears to correlate excellently with the values

given byf[ Kfk(v) / G(1rP) ]where 0 is a constant. It is interesting to

observe that, for the present problem, this constant s appears to be equal

to G(ERc)/F(ERc) where F(ZRc) is the finite correction factor in the static

stress-intensity for a crack of length equal to the current length, ERc' in

a dynamic problem, at which the event Rc (as defined earlier), occurs; where-
as, G(.Rc is likewise, the ratio [F(o)K*/a/ ] at E = ZRc" The event Rc

is seen to occur at the time, t = (2Eo)/(CR-V), and thus, ERc =-0 + Vt.

Both t and (ERc/W) decrease as Z decreases, for given CR and v. Thus, for

smaller values of Eo (and/or smaller values of v), the ratios F(ERc), G(ERc),

and hence B tend to a value of unity. Thus, for cracks propagating from

initial lengths such that (E /W) << 1, it appears that at the times greater

than Rc and DcDf and/or after the crack has grown dynamically to a few tires

its' initial length, the static factor K*f approaches the static-stress-

intensit, factor for the current crrlck length in the finite body, namely, K5
f

In connection with tile presently computed results shown in Fig. 2, it

should be noted that the crack velocity, v, was take,, to be zero at the initial

crack length Eo" It is assumed that the crack-tip accelerates to a velocit',

(V/Cs) = 0.2, during the first time increment, At. The convergence of the

present numerical results to the analytically prejicted ones, at small tii,,s,

t << Dc in the present case of (V/Cs) = 0.2, could have been studied by aV-h2

this time step At in w-hich the crack-tip accelerates from (v/Cs) = 0 to (v/i

0.2. Hlowever, this was not attempted.
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The computed normalized dynamic stress-intensity factor solution for the

case (V/Cs) = 0.4 is shown in Fig. 3, wherein the times Dc, Sc, DcDf and Rc,

as defined earlier, are also marked. Once again, it is seen that until sirnifi-

cant interaction of the waves from the other crack-tip and the free surface

takes place (ie., for time t < Rc or DcDf), the computed dynamic K-factor for

the finite body correlates excellently with the value predicted by the approx:imate

function: [K*fk(v.)].

Finally, the results for the cases (v/Cs) - 0.6 and 0.8, respectively,

are shown in Fig. 4, wherein only the times Dc and DcDf are also marked.

The values of Rc and Sc are greater than the time for which the solution is

obtained. Once again, it is seen that the computed dynamic K-factor correlates

well with the approxiiate prediction, K*f k,) . I:e'ever. the converqence 0.

the computed solution, to that analytically predicted, is slow, at these

higher crack-speeds. A possible reason for this may be the initial conditiois

at Z used in the present study, as explained eariler.

The crack-mouth opening displacements at various instants of time (or

equivalently, at corresponding crack-lengths), for the case of (v/Cs)5

are shown in Fig. 5. Also shown in Fig. 5 are the corresponding analytical

results by Broberg [2], who consideres constant velocity crack-propagation

starting from a zero initial crack-length. An excellent correlation between

the present results and those of [2] is noted. A similar correlation was

also noted for the other considered cases of (v/C s ) ratio, but are not shown

here.

(iii) Stress-Wave Loading of a Stationary Crack in a Finite Body

The problem is that of a rectangular panel [(w/L) = 2.6] with a centr.;lly

located crack of length (,: /W) = (3/13). The laterial properties are taken
100

to be: p(shear modulus) = 2.94 x 101 N/m; v = 0.286; and p = 2.45 x l0
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kg/m 3 . Uniformly distributed uniaxial tensile stresses, with a Heaviside step-

function time-dependence, were assumed to act at the edges of the panel parrellel

to the crack-axis. The crack is assumed to be stationary under the action of

this time-dependent loading.

Due to symmetry, only a quadrant of the panel is modeled by finite elements,

as shown in Fig. 6. Also marked in Fig. 6 are specific instants of time,

calculated by using continuum wave speeds, withi the notations: (a) Dm is

the time taken by the dilatational waves to travel the distance from the

boundary, where time-dependent tractions are applied, to the crack-tip; (b)

D mDc , DmSc and Dm R are, respectively, equal to DIl plus the time taken by

the first scattered dilatational, shear, and Raleigh waves to reach from one

crack-tip to the other; (c) DmDcDc is equal to DM Dc plus the time taken by

the first rescattered dilatational wave to travel one crack-width; (d) DiD D

is equal to D' plIs the ti -e taken by the scc.t.r longtitudin, ..aves t.
- m

travel from the crack-tip to the nearest free boundary surface and back to

the same crack-tip; (e) Dmn is the time taken by the dilatational waves to

travel the length of the bar, reflect from the boundary surface on the

opposite and return back to the crack-tip; and (f) D1 mDc, D DmmSc and DmD R
mmc

are, respectively, equal to D D plus the time for the rescattered dilatation1

shear and surface waves to travel one crack-.,idth.

The presently computed normalized dynamic stress-intensity factor solution,

is shown in Fig. 6. Also shown in Fig. 6 are the analytical solutions by

Baker [5], Sih, Embley and Ravera [6], for infinite domains, and the numeric ,1

solution by Aoki et al [21 for a finite domin iientical to the one consignor.'

here. During the time interval DP to DIPDc , when no wave intereaction takrs

place, the results for the present problem must anree with the resultS of

Baker [51 and this can be seen to be the case vith the present results. The

solution at longer times is found to be in good agreement with that of Sih et al
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[6]. It is noted that the overshoot in the k-factor at the time instant DmRc

in the present solution, as compared to the solution by Sih et al [6J, is

analogous to that in a recent solution by Kim (13]. It is also seen from Fig.

6, that the present solution is higher than that of Aoki et al [12] at all

times. However, the solution by Aoki et al appears to be lower than that by

Baker L5J even for times less than DmDc*

Finally, it is of interest to note that even though the time for the

longitudinal wave to arrive from the loaded boundary to the crack, as computed

from continuum wave speeds, is Dm as marked in Fig. 6, a nonzero stress-

intensity is observed at the crack-tip even at times lower than Dm in the

finite element solution. This is due to the inertia-coupling that exists

between the finite element nodes (especially those of the singular-element)

when a consistent mass-matrix, as in the present, is used.

(iv) Crack-Propagation at Constant Speed: Stress-Wave Loading

We consider the problem wherein the geometry, material properties and

the time-dependent loading are all identical to those described under the case

(iii) above. In this problem, the crack with an initial length of (Eo/W)

= 3/13 remains stationary until a time to = 4.4 ps and then propagates with

a constant velocity v = 1000 m/sec. The finite element breakdown at the

initial crack length, Eo , is identical to that in Fig. 6. In modeling the

crack propagation, the regular elements are periodically readjusted as

indicated in Fig. 2 of [1]. The instants of time (or equivalently the value

of 7) at which this readjustments are done, are marked, by (t) in Fig. 7.

Also marked in Fig. 7 are several specific instants of time, calculated

by using continuum wave speeds, with the notations: (a) D is the time for

the dilatational waves to travel from the boundary, where a Heaviside step

function tension is applied, to the stationary crack-tip. (b) DmDc , DmSc
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and DmRc are, respectively, equal to Dm plus the time taken by the dilatational,

shear and surface waves first scattered by the stationary crack-tip to reach

the other crack-tip; (c) Dc , Sc, Rc are, respectively, equal to to (when the

crack-tips begin to propagate) plus the time taken by the dilatational, shear

and surface waves emanated by crack-tip at to to reach the other crack-tip;

(d) DmDm is the time taken by the longitudinal waves to travel the length

of the panel to the opposite side and return to a (moving) crack-tip; (e)

Dc Dm is the time taken for the dilatational waves emanating from a crack-tip

at to travel to the nearest boundary (which in this case is the one where

tractions are applied) and back to the same crack-tip, (f) DmDcD is equalmc f i qa

to Dm plus the time taken by the dilatational waves first scattered by the

stationary crack-tip to travel to the nearest free-boundary and back to the

same crack-tip, which is now propagating; (g) DcDf is equal to to plus the j

time taken by the dilatational waves emanating from the crack-tip at to to

travel to the nearest free boundary and back to the same crack-tip.

The presently computed results for the dependence of the dynamic stress

intensity factor on time are indicated in Fig. 7, along with the comparison

(analytical) results by Freund [8] and Baker [5], and the (numerical) results

by Aoki. et al P12] . As noted earlier, the correlation of the present stationary

crack results with those of Baker [5], until wave interaction takes place, is

excellent. In the case when the crack propagates suddenly at the time to

(= 4.4 us in Fig. 7), the infinite domain results by Freund [S] are seen to

correlate excellently with the present results, until significant interaction

of waves emanating from one crack-tip with the other crack-tip takes place.

It is noted that in [3] the crack-tip velocity is assumed to change from zero

to "v" in zero time, whereas, in the present numerical study, this transition

is assumed to take place over a finite time-step *At. For a closer comparison
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with the results of [8], it would be interesting to vary the size of At over

which the above transition occurs; but this is not pursued in the present

study. .It is seen that the comparison results by Aoki et al 1 are somewhat

lower than those in [8] even until the time that the solution in [8] may be

considered valid. Further, the results in [12] are higher than the present,

after this time.

The crack-face opening displacements at various time intervals for the

propagating crack, as well as similar results at corresponding times for a

stationary crack are shown in Fig. 8. It is interesting to note that zt

sufficient distances away from te propagating crack-tip, the crack-mouth

opening displacements are nearly the same for the stationary as well as

propagating cracks.

(v) Constant Velocity Crack-Propagation in a Strip with Prescribed Boundary-

Displacements

The problem considered is that of the constant velocity propagation of an

edge crack in a square sheet whose edges parrellel to the direction of crack-

propagation are subject to uniform displacements u., in the direction normal

to that of crack-propagation. This problem is analogous to that treated by

Nilsson [9] who obtained an analytical solution for the steady-state stress-

intensity factor for the constant velocity propagation of a semi-infinite

crack in a finite-height (normal to crack-axis), infinite-width, strip.

In the present problem the following geometry and material parameters

are used: (2h/W) = 1.0 (see inset of Fig. 9), v = 0.286; p = 2.94 x 1010 2

and o = 2.45 x 103 Kg/:! . The crack is assumed to start to propagate from

an initial length of (oh0) = 0.4.

Three different cases of constant velociCy propagation, (v/C S) = 0.2;

0.40, and 0.60, respectively, are considered.
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The results for the dynamic stress-intensity factor for the case (v/C S)

0.2 are shown in Fig. 9 along with the analytical solutions by Nilsson [9]'

The results in Fig. 9 are normalized with respect to the plane-strain, static

(v = 0) stress intensity factor for the semi-infinite crack in a finite-heiqht,

infinite-width strip, namely, Koo : 2E / h (_lv2) . Also shown in Fig. 9

are certain specific instants of time, with the notations: (a) DcDfl,

ScSfl, are, respectively, the times taken by the dilational, and shear waves,

emanated by the moving crack-tip to be reflected from the nearest free-boundary

and travel back to the crack-tip; (b) DcDf2 is the time taken by the dilatational

waves emanated from the crack-tip to be reflected by the second free-boundary

(x = W) and travel back to the crack-tip.

It is seen from Fig. 9 that, the correlation between the present and

Nilsson's [9] results is excellent. It may be of interest to note that in

an analysis using the "node-release" technique, Malluck and King [14] found,

for the case of (V/Cs) = 0.325, that their computed results for the energy-

release rate for a similar problem were about 20% lower than that predicted

by Nilsson [9], as steady-state conditions are reached. This may indicate

the relative efficiency of the present numerical method as compared to the

familiar "node-release" techniques.

Finally the computed results for the cases (v/Cs) = 0.4 and 0.6 are sho."n

in Figs. 10 and 11 respectively. The times noted in Figs. 10 and 11 have the

same meanings on those indicated in Fig. 9. From Figs. 10 and 11 it is once

again seen that the present results agree excellently with those in [9].

Closure

The procedure of a "moving singular element", within which a large

number of eigenfunctions for a propagating crack are embedded, has been

applied to study several problems of dynamic crack propagation in finite
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bodies. The numerical results have been found to correlate well with the

available analytical solutions, for corresponding problems in infinite do-

mains, during the time for which these analytical solutions may be considered

as valid. The computed solutions beyond these times, and the knowledge of the

times involved for wave-interaction in finite bodies, indicate both

qualitatively and quantitatively the effects of stress-wave interactions on

dynamic stress-intensity factors for cracks propagating in finite bodies.

The use of the presented numerical procedure in the simulation of experi-

mental data from dynamic fracture test specimens, as well as in predicting

crack-propagation history in dynamically loaded cracked bodies, are the sub-

jects of a forthcoming paper.
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Figure Captions

Fig. 1 Calculation of Static KI factors in a center-cracked tension specimen

by the present "moving-singularity" method: AE = 0.005. (t)
indicates the current crack length when the regular element are
readjusted as shown in Fig. 2 of [I.

Fig. 2 Normalized Dynamic Stress intensity factor for a crack starting from
a finite initial length and propagating with constant velocity,
v/Cs = 0.2.

Fig. 3 Normalized Dynamic Stress intnesity factor, (v/Cs) = 0.4.

Fig. 4 Normalized Dynamic Stress intensity factors for the cases (v/C S)
0.6 and 0.8.

Fig. 5 Crack-face Displacements at various time-instants, for a crack
propagating at constant velocity, (v/Cs) = 0.4.

Fig. 6 Time-Dependence of dynamic stress-intensity factor for a center-cracked
rectangular plate subjected to Heaviside step-function normal stress.

Fig. 7 Time-Dependence of dynamic stress-intensity factor for a center-cracked
rectangular plate subject to a step-function normal stress. Crack
remains stationary until to and then propagates with a constant velocity.

Fig. 8 Crack-face profiles for a stationary as well as propagating crack at
various times.

Fig. 9 Dynamic stress-intensity factor for an edge cracked square sheet
subject to constant normal displacement: (v/C s) = 0.2.

Fig. 10 Dynamic stress-intensity factor for an edge cracked square sheet
subject to constant normal displacement: (V/Cs) = 0.4.

Fig. 11 Dynamic stress-intensity factor for an edge cracked square sheet
subject to constant normal displacement: (v/Cs) = 0.6.
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